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Visual Mathematics  Current Research, Sensual as Hollywood Cinema

Splendid Ideas, Brilliantly Converted into Pictures
Mathematics can be 
pictorial. Computers 
can contribute. Are 
there pictures which 
are proofs?
BY GERO VON RANDOW
TRANSLATED BY ROLAND GIRGENSOHN

0Pictures have suggestive power. 
This is also true in the natural 
sciences with their particle tracks, 
molecular models and genealogi-
cal trees. How about Mathe-
matics? What gets drawn on 
blackboards are not always just 
mathematical symbols (which 
however may be iconic, that is, 
small figures which resemble what 
they signify, such as the sign > for 
the “greater than” relation). Trees 
can be seen as well, or nets, or 
strange shapes with handles. Oth-
er mathematicians crouch in front 
of the monitor and play around 
with colourful pictures.

In doing so, they apply in-
struments to their science which 
arose out of just this science. 
Mathematically supported visual-
ization has grown to be a powerful 
tool in technology and science. 
Designers of automobiles, climate 
scientists, or producers of micro-
chips, all transform their models 
into moving simulations and thus 
gain insight. They profit from 
investments made by the film and 
game industry, which has hired 
some of the best mathematicians 
to develop realistic looking picture 
sequences on their computers. 
The breakthrough was the 1993 
movie “Jurassic Park” where 
computer-generated sequences, 
which looked almost real, were 
meshed with conventionally 
filmed scenes. There was also a 
mathematician in the movie. A 
dinosaur bit him.

The first crisis in mathematics 
came from a visual problem. The 
Pythagoreans believed that all 
laws in the cosmos are governed 
by the integers. But then they 
discovered that the basis of a 
right-angled triangle with sides of 
length 1 must have a length of √2: 
a number which cannot be ex-
pressed as a ratio of two integers. 
It was visually clear to them, how-
ever, that such a triangle existed.

Arguments based on pictures 
can often be found in the ancient 
texts, for example in Euclid (ca. 
300bc), the founder of strictly for-
mal geometry. He had trouble to 

define what, exactly, a point is: 
something that has no dimen-
sions. But then, how can some-
thing like that lie on a line, and 
what does “lie” mean in this 
context? The solution was found 
in the 17th century: René Des-
cartes defined a point through 
two numbers (its coordinates on 
the x- and y-axis). This was of 
course not the end of pictures in 
mathematics: suddenly many 
mathematical relationships could 
be visualized in a coordinate 
system.

In mathematics there are al-
ways opposing trends: rigorous 
arguments vanquish visual ones, 
and not long thereafter new ob-
jects arise to be visualized. In the 
19th century geometries were de-
veloped where parallels intersect, 
or spaces with four, five, arbitrar-
ily many or infinitely many di-
mensions. They can be accurately 
described only in a formal man-
ner. But shortly after that topol-
ogy began to flourish. It started 
with the concrete problem of clas-
sifying shapes by those properties 
which remain unchanged under 
continuous distortion. Since then 
topology has lost much of this vi-
sual quality – but nowadays there 
is so-called graph theory where 
diverse trees and nets are drawn. 
Even in the most abstract 
branches of mathematics, e.g. in 
algebra, the visual is present. Its 
“groups”, “rings” or, in general, 
notions of symmetry reflect that 
mathematicians often think of 
forms when they write formulas.

Pictures generated by comput-
ers can aid in getting ideas. Bi-
zarre curves can often point to 
something that is mathematically 
interesting. Honest mathematical 
experiments can be carried out 
using visualization by computer 
programs. And pictures are suited 
for communication, most impor-
tantly for teaching, provided they 
do not replace the understanding 
of the underlying formulas.

Can pictures be more than vi-
sualization? Do they just make a 
thought plausible, or can they be 
conclusive? After all, they can re-
fute a conjecture, for example on 
the shape of a curve. They can 
perfectly well act as proofs: 
namely in those cases where there 
is agreement that a visually evi-
dent fact can also be proved 
rigorously. Almost all mathemati-
cians, however, reject the idea that 
pictures can be true proofs – even 

Zeros of a Polynomial

This is not a wreath but an ex-
ample for how even relatively 
simple mathematical objects can 
blossom when one uses a com-
puter to release them into the 
plane of complex numbers. 
Complex numbers are in some 
sense a two-dimensional exten-
sion of the usual (real) numbers. 
They are needed to provide 
roots of negative numbers. All 
complex numbers z lie on a 
plane, and one can apply func-
tions to them, for example 

polynomials, in this case it is

f(z) = a0 + a1z + a2z2 + a3z3 + … + a21z21.

The picture shows the zeros of 
this function, that is, all num-
bers z for which f(z) = 0, where 
the coefficients a0 to a21 take 
both the values -1 and +1 – with 
the exception of a3. The colour 
indicates how sensitive the posi-
tion of the zeros depends on de-
viations of the coefficient a3 
from the value 1.

by Ulf von Rauchhaupt

Visual Proof of the Assertion

The Greek summation sign 
instructs us to let n grow from 1 to 
infinity, to use these numbers to 
exponentiate (1/2)2n, and to add 
the results. The sum approaches the 
value 1/3. The picture suggests 
that this assertion is true. Is this 
already a proof? And if so: are 
visual proofs only suited to really 
simple cases like this one? 

Red indicates where the 
depicted function behaves 
especially stably when a 
certain element in it is 
changed. 

“Penta” has 
genus five: this 
means that 
the object has 
five holes. A 
donut (torus) 
has genus one.

65 Strange 
Positions
A so-called algebraic surface in 3-
dimensional space is described 
through variables which can have 
names like x, y, z. Surfaces can 
have different degrees; the degree 
of a surface is determined by the 
highest exponent in its equation: 
the equation x2 + y2 + z2 = 1 for 
instance describes the surface of a 
ball and has degree two. The 
surface in this picture has degree 
six, since if its equation is 
multiplied out, then w6 appears. 
Therefore it is called a sextic. 
There are 65 places on the surface 
where things become interesting. 
They are so-called “double 
points”: they behave similarly to 
those points on a curve which do 
not admit a well-defined tangent, 
as for example pointed corners. 
Double points of a surface do not 
admit a tangent plane. This pic-
ture pertains to a research topic 
which already emerged at the 
beginning of the 20th century, but 
only now gains steam: what is the 
maximal number m of double 
points of an algebraic surface of 
degree d in three-dimensional 
space? For degrees three to six 
there are established theorems, for 
higher degrees there are only 
certain intervals known in which 
to look for m. The 65 double 
points of this sextic is the maximal 
number m. It has the shape of an 
icosahedron; one would like to 
know why. by GvR

Does this Figure Exist?
construction, the picture only sug-
gests its mathematical existence, 
nothing more: it is no proof of ex-
istence. Therefore it is possible 
that Penta does not exist in a 
mathematical sense; it is only 
known that objects of this type 
exist generally.

These are the criteria: firstly it 
is a closed surface in three-
dimensional space, therefore has 
no boundary. Secondly it only has 
a few holes, but more than one. 
Thirdly it has “constant mean 
curvature” – to explain what this is 
it is necessary to be a bit more de-
tailed. The curvature of a curve at 
a point results from the rate of 
change the tangent undergoes 
when it proceeds from this point 

onward. The curva-
ture of a surface at 

a point can be 
understood as 
follows.  Put a 

book on your head; when you 
move it around, you will see if your 
head is rather peaked or rather 
round. Mathematics specifies more 
precisely the curvature of a surface 
at a point P: first construct a per-
pendicular line to the surface at P. 
Then consider all planes that 
contain this line. The planes will 
intersect the surface in a curve. 
Each of these curves will have a 
certain curvature at P.  Now con-
sider the two curves with minimal 
and maximal curvature. Half the 
sum of these values in P is the 
“mean curvature” of the surface in 
this point. Its name is H.

This H is an important quan-
tity for so-called minimal surfaces: 
they are surfaces which have min-
imal size under constant con-
straints (e.g., a certain boundary 
or a certain enclosed volume). 
There is a proof by Euler that 
says that H is zero for all minimal 
surfaces with boundary; the 
neighbourhood of every point 
then is either completely flat or 
shaped like a saddle, in this case 
minimal and maximal curvature 
add to zero. The surfaces of 
spheres, for example soap bub-
bles, are closed (i.e., without 
boundary) minimal surfaces which 
enclose a given volume; at every 
point they have a constant and 
positive H. Penta has a constant 
mean curvature H as well and is a 
minimal surface for a given 
volume if the number of holes, 5, 
is prescribed. by GvR

This figure obeys
the equation
4(τ2x2 - y2)(τ2y2 - z2)
(τ2z2 - x2) - (1 + 2τ)
(x2 + y2 + z2- w2)2w2 = 0

where
τ = 1/2(1 +√5)
It is a so-called sextic.

This formation of green balls, 
called “Penta”, satisfies certain 
requirements for its geometrical 
properties. Interestingly, sym-
metry is not one of them. It has 
been found through complicated 
trials on the computer. Since it 
does not come from a systematic 

in those cases 
where, such as 
in the theorem 
of Pythagoras, all 
doubts can be re-
solved by moving trian-
gles around. There are two 
arguments for this hard stance. 
First: every mathematical theo-
rem  must be universally valid, 
not just for this specific triangle or 
parabola. Second: every human 
visualizes differently, but the 
interpretation of a formula is the 
same for everyone. These argu-
ments show however that proofs 
in mathematics are a matter of 
agreement: their truths are not 
absolute but only hold under 
certain human-made rules – but 
then with certainty.

A Point Goes Hiking
The structure above is easy to 
construct – the rationale is the 
underlying software. What shines 
there so nicely is the “conchoid of 
a certain curve, projected onto the 
surface of a sphere”, and it is con-
structed as follows: at first a curve 
is drawn, let us call it C. Then a 
point O outside of C is chosen. 
We may call it the “pole”. Fur-
thermore we choose a number. 
Call it k: it is a “constant”. Now 
we draw a straight line through O 
which intersects C somewhere; 
the intersection is named P. Then 
points Q1 and Q2 are deter-
mined: those points on the line 
which have a distance of k to P. 
Now everything is prepared: the 
conchoid is generated by rotating 
the line around the pole, so that 
the point P goes hiking. The 
points Q1 and Q2 draw the con-
choid (see the figure to the right); 
mathematicians write: “The con-
choid from O to the curve C is 
the position of all Q1 and Q2 for 
variable P and constant k.”

Using the geometry software, 
“Cinderella” even math-laymen 
can construct conchoids and other 
objects. The tour of the point P 
can even be shown on the move, 
this is then called “dynamic geo-
metry”. Using Cinderella it is easy 
to project the conchoid, lying in 
the plane, onto the surface of a 
sphere – as in the picture above. 

Cinderella also provides other 
projections. That is, it is possible 
to switch from Euclidean to dif-
ferent non-Euclidean geometries, 
thus to work in the plane as well 
as on spheres and other shapes.

The reason why this is so easy 
is that the program performs its 
internal computations on the basis 
of a theory from the late 19th 
century which unifies all of these 
geometries; shown, however, is 
only that representation chosen 
by the user. The clever program 

in the background also avoids 
some unpleasantnesses known 
from other geometry programs – 
such as that some point in a 
construction cannot be moved 
continuously but only in steps 
where mathematically ambiguous 
situations occur; in such cases the 
program makes a mathematically 
justified decision.

Cinderella can be viewed at 
www.cinderella.de and is also 
suited for schools. by GvR

This used to be an ordinary 
geometrical drawing. But 
then it was projected onto a 
ball, with the use of modern 
software. Then the curves 
became struts and the points 
became balls. Finally, high-
lights were added: all of this 
using mathematics.

Shocks Make Waves
Hydrodynamics is the physical 
theory of flows. No matter if you 
want to optimize car bodies or 
understand cosmic nebulas, you 
will deal with hydrodynamic 
equations – and only on rare oc-
casions can they be solved without 
a computer. Nowadays there 
exists refined software to compute 
complicated phenomena such as 
three-dimensional shock fronts, 
turbulence, or – as in the picture 
below – combinations of both. 
The shape shows what happens 
when a cylindrical shock-front 
vertically hits a likewise cylin-
drical region of lower density and 
thereby generates tubes of rotat-
ing gas (in red), that is, turbu-
lences. It is not easy to compute 
something like that. It is also dif-
ficult to represent the results in 
such a way that the spatial  

structures so generated are 
recognizable.

One possibility is to colour 
and shade those surfaces in space 
on which the quantities we are 
interested in (such as the pressure 
of the gas) take given values. One 
disadvantage of this is that it takes 
a lot of effort to compute three-
dimensional surfaces. Also, such 
pictures can easily become too 
complex. For the picture below 
so-called “volume rendering” was 
used, which means that the scene 
is subdivided into small elements 
(“voxels”). The physical quantities 
in each voxel determine its colour 
and, more importantly, its trans-
parency, so that entangled struc-
tures like the one shown here can 
be discerned. The process of visu-
alization is now even interactive.

by UvR

Glittering 
DNA 
Molecule
Big biomolecules are among the 
most complex systems investi-
gated by science. Among them  is 
the dna molecule, where all in-
formation about a living body is 
stored. It is conjectured that the 
biochemical properties of a dna 
molecule are determined by its 
behaviour under flexing and twist-
ing, among other things. The 
segments of a single dna  
molecule are not all equally 
flexible, but their flexibility 
depends on the arrangement of 
the base pairs at the given spot. In 
principle, it should be possible to 
compute the flexibility from the 
chemical properties of the 
individual atoms, but this is asking 
too much of even the fastest 
supercomputers available today. A 
better approach therefore is to 
model such a dna molecule as a 
piece of wire whose elasticity 
varies continuously from place to 
place. Once such a wire with 
varying flexibility is specified, its 
properties can be studied on the 
computer and it can be investi-
gated as to how the mechanical 
behaviour of the dna  changes 
when a protein molecule (green 
ball) is attached to it. Pictures, 
generated by the computer, like 
this one help to visualize such 
configurations – and look good on 
the title pages of scientific 
journals. by UvR

The picture editors of scientific jour-
nals love this: dna with gold and 
glamour.

How to Turn a Sphere 
Inside Out
A sock with one open end can be 
turned inside out, a tightly sewn 
soccer ball cannot. This is in con-
trast to the mathematical model 
of a soccer ball, the sphere. It can 
indeed be deformed continuously 
without tears and kinks in such a 
way that in the end its inner sur-
face will be the outer surface – but 
only if the surface of the sphere is 
allowed to penetrate itself during 
the procedure. Topologists call 
such an operation “eversion”, and 
the picture to the left shows an 

early stage: in the next 
stage the four finger-

like appendages 
will penetrate 
each other and 
will in this way 
draw the inner 
surface of the 
sphere to the 
outside. This 

would be impos-
sible with the 

two-dimensional 
analogue of the 

sphere, the circle: 
when exchanging inside 

and outside of a circle without 
leaving the plane, cracks and tears 
must necessarily occur. There-
fore it came as a surprise to 

mathematicians when in 1957 a 
doctoral student named Stephen 
Smale proved that eversion of 
spheres is possible. Since then 
mathematicians have tried to 
comprehend such operations via 
sketches on paper or by using 
wire models. The simplest ever-
sions possible, however, were 
found in the nineties by John 
Sullivan and George Francis from 
the University of Illinois using the 
computer. They modeled the 
surface of the sphere as consisting 
of rubber which tautens on de-
formation and therefore becomes 
charged with energy. They knew 
from theoretical considerations 
the shape of a sphere that is half-
way everted and has maximal 
energy. Then they used the com-
puter to calculate how this bizarre 
entity contracts to a figure with 
minimal energy – which is just a 
sphere – and so they got pictures 
of each stage of the eversion. It 
was not at all clear a priori 
whether a half-everted sphere 
with maximal energy really 
shrinks down to an inside-out 
sphere by itself. Only the experi-
ment on the computer showed 
that it worked. Was this already a 
proof? by UvR

We’re set to go: 
the sphere is pre-
paring for its trick. It will invert 
its inside to the outside.

Pictures from Sound
Sound waves are not only useful 
to transmit speech and music. 
Many different branches of sci-
ence – from ultrasonic medical 
diagnostics to research of earth-
quakes – use the ability of sound 
to carry information about its 
source. Explorations using sound 
flourished with the advent of fast 
computers and efficient algo-
rithms. This is because diagnostics 
with sound are mathematically 
finicky. It is a relatively easy exer-
cise to send a simple sound wave 
against an object of known form   

and then to compute the shape of 
the reflected waves. If, however, 
the object has a complicated 
three-dimensional structure – 
such as the dolphin here in the 
picture – then the underlying 
equations can only be solved 
approximately. In practice, how-
ever, the inverse problem is of 
more interest: one receives sound 
waves and wants to draw 
conclusions about the shape of the 
object on which they were 
reflected. Solutions to such 
inverse problems have the 

unpleasant property that they are 
very sensitive to disturbances and 
usually have several solutions: one 
and the same pattern of sound 
waves can be generated by 
different objects. Mathematicians 
call this an “ill posed problem”. 
The reflecting object becomes 
unique only if one manages to 
extract additional information 
from the equations. Often this is 
done by viewing the object from 
different angles and superposing 
the received sound waves in the 
computer. by UvR

Submarine or dolphin? The 
reflected sound waves betray it.

Chaos with Structure
This picture is something of an 
icon for a sector of research which 
was “in” in the late eighties – not 
coincidentally just at the time 
when computers became afford-
able. This “in” sector is the 
dynamics of nonlinear systems, 
aka chaos theory. The behaviour 
of such a system often delicately 
depends on its initial state – in 
contrast to linear systems, such as 
two celestial bodies which orbit 
around each other because of 
gravitational attraction. Systems 
like this always repeat their 
constellations and can therefore 
be predicted with precision. We 
are in fact lucky that the system  

consisting of the Earth and the 
Sun is very close to an ideal linear 
system. In contrast to that, the 
orbits of nonlinear systems are 
usually not closed and are often 
similar to the diagram shown 
here. The underlying system was 
discovered by the meteorologist 
Edward Lorenz, when he formu-
lated a simple model for the flow 
of gas. The picture shows that al-
though the curve never returns to 
itself, it also does not move com-
pletely erratically through space. 
Instead it forms a strange pattern 
– an “attractor” (see www.wam. 
umd.edu/~petersd/lorenz.html). 
Often attractors have interesting 
properties which can provide 
information about significant 
aspects of the long-term develop-
ment of the underlying dynamical   

system. Modern techniques allow 
investigation of such properties of 
the attractor without having to 
calculate the complete temporal 
development of the system. Often 
visualization of such properties, 
e.g. by colour coding, is helpful.

by UvR

The “Lorenz Attractor”, once a 
popular motif on t-shirts and 
coffee cups.

The highlights facilitate 
the observation of 
the interaction of 
the atoms. The 
nifty 3D effect al-
most lets one for-
get that this 
is only 
theory.

Molecular 
Ballet

Often the function of a biomole-
cule is determined by the different 
stable forms it can achieve. As 
soon as its principal features are 
known, its favorite forms (“con-
formations”) can be computed. 
The mathematical formulation of 
the problem can be traced back to 
concepts, some of which are 
around 170 years old, and to the 
work of a multitude of physicists 
in the 20th century. But it is not 
enough to formulate the problem 
– it should also be possible to 
compute its solutions. In the case 
shown here tricky transformations 
of the problem and the latest 
computing techniques were ne-
cessary. The succession of the 
different conformations of the 
molecule was estimated with the 
use of new techniques which go 
back to a method (Markov 
Chains) which is more than 100 
years old; the estimates were 
prepared using an artificial neural 
net, which is a technique from the 
area of artificial intelligence. 
Every contiguous pair of links is 
represented as a triangle. The 
glowing nebulas represent the 
probabilities that the molecule 
assumes a certain shape. by GvR

Virtual 
Etching

Stone tools were picked and bat-
tered into shape; metal was 
smelted, founded and forged. 
Silicon however, the material on 
which the information age is based, 
is crystallized and etched. The 
smaller the transistors on the semi-
conductor chips become, the more 
important accurate etching is.

The Finnish scientists who pro-
duced this picture have simulated 
this important process on a com-
puter within the precision of one 
atom. They investigated how the 
probability with which a corrosive 
chemical peels away a silicon atom 
from the crystal depends on the 
atomic neighbourhood. They have 
prepared their results graphically in 
such a way that it is possible to 
compare them directly to micro-
scopic photographs of real etching 
patterns. by UvR

The Duisburg mathemati-
cian Martin Rumpf is one 
of the most sought-after 
computer graphics ex-
perts of the world. His 
methods can be used to 

quickly depict even the 
most complicated surfaces 
of creatures, such as for ex-

ample this head. Three years 
ago he and his colleagues 

Konrad Polthier and Hans-Christian Hege 
set the ball rolling: during a conference on 
mathematical visualization they made the 
suggestion to combine pictures from 
current research areas into a calendar. 
Now it is finished (H.-C. Hege, K. Polthier, 
M. Rumpf: MathInsight 2002, Springer-
Verlag, DM 49, 49). The pictures on these 
pages are taken from it. Not long before 
that, a compendium of current research 
was published which addresses the lay-
man with some mathematical training: 
Mathematics Unlimited – 2001 and 
beyond, written by the cream of the field, 
it details on 1237 pages those areas where 
important work is done nowadays (more 
information under www.springer.de).

35 Million Balls
This is a minuscule clipping from 
a picture with 35 million balls; the 
supercomputer in Los Alamos 
which was used to generate it 
presents ten to fifteen such 
pictures per second in an 
interactive visualization. The 
pictures show the spreading of 
cracks; the balls represent atoms. 
The photorealistic effect is 
achieved by a technique called 
“ray tracing”: the program 
simulates in real time the path the 

light takes upon 
being reflected 
by the three-
dimensional 
balls.

Such visualizations are only 
possible using computers which 
are massively parallel, that is, 
where many processors work at 
the same time. To govern this 
teamwork is a mathematical prob-
lem in itself: find, for a given task, 
with given resources of hardware, 
and for a given timeframe, an 
optimal segmentation into 
subtasks. Such massively parallel 
computations are performed in 
simulations of the climate and in 
the construction of aircraft, also in 
the evaluation of astronomical 
data, in the development of atom 
bombs, or in the computer studios 
of the film industry. by GvR
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The point O is the point from 
which the conchoid is constructed.

Conchoid of a Sinusoidal Curve


